Mathématiques

Question

Salut ! Veuillez m'aider à résoudre cet exercice de Logique , s'il vous plaît .

Soient a , b et c des réels de R+* tq :
[tex]abc > 1[/tex] et [tex]a + b + c < \frac{1}{a} + \frac{1}{b} + \frac{1}{c} [/tex]
• Montrer que : a < 1 ou b < 1 ou c < 1​

1 Réponse

  • bjr

    on sait que abc > 0 et a + b + c < 1/a + 1/b + 1/c

    si a + b + c < 1/a + 1/b + 1/c alors a + b + c - (1/a + 1/b + 1/c) < 0 (1)

    a + b + c - (1/a + 1/b + 1/c) =

    a + b + c - 1/a - 1/b - 1/c  =               (dénominateur commun abc)

    [(a + b + c)abc - bc -ac - ab] / abc =

    (a²bc + ab²c + abc² - bc - ac - ab) /abc =

    [bc(a² - 1) + ac(b² - 1) + ab(c² - 1)] / abc  

    supposons que les trois nombres a, b et c soient supérieurs à 1

    alors

    [bc(a² - 1) + ac(b² - 1) + ab(c² - 1)] / abc > 0 (2)

    ce qui est en contradiction avec (1)

    les 3 nombres ne peuvent pas être tous supérieurs à 1,

    il y en a au moins un qui est inférieur à 1

Autres questions