Mathématiques

Question

hello hello
please la 2e demonstration et la quest 2
bloquée
merci ​
hello hello please la 2e demonstration et la quest 2 bloquée merci ​

2 Réponse

  • Réponse :

    soit x un nombre réel strictement supérieur à 0

    1) montrer que √(1+x) > 1 et que √(1+x) < 1 + (1/2) x

        x > 0  ⇔ x + 1 > 0 + 1  ⇔ x + 1 > 1  ⇔ √(1 + x) > √1  ⇔ √(1 + x) > 1

        x > 0  ⇔ 1/2) x > 0  ⇔ 1 + (1/2) x >  1  

         (1 + x/2)² ⇔ 1 + x + x²/4 > 1 + x    donc   √(1+x/2)² > √(1+x)

    1+x/2 > √(1+x)

     donc    1 < √(1+x) < 1 + 1/2) x

    2) en déduire un encadrement de √1.01 d'amplitude  10⁻³

                   1.004 < √1.01 < 1.005

    Explications étape par étape :

  • Réponse :

    Explications étape par étape :

    1)

    soit x un nombre strictement positif

    alors on a

    x > 0

    ⇒ x² > 0

    ⇒ (1/4) x²> 0

    ⇒  (1/4) x² + x > x

    ⇒(1/4) x² + x + 1 > x + 1

    ⇒ (1 + (1/2) × x)² > x + 1

    ⇒√(1 + 1/2 x)² > √(x + 1)

    ⇒ 1 + 1/2 × x > √(x + 1)

    soit x un nombre strictement positif

    alors on a

    x >0⇒ x + 1 > 1 ⇒ √(x + 1) > √ 1 ⇒ √(x + 1) > 1

    2) on sait que 1 < √(x + 1) < 1 + 1/2 × x et que √1,01 = √( 1 + 0,01)

    ici x = 0,01

    on a donc

    1 < √(0,01 + 1) < 1 + 1/2 × 0,01

    1 < √(0,01 + 1) < 1 + 1/2 × 1/100

    1 < √(0,01 + 1) < 1 + 1/200

    1 < √(0,01 + 1) < 1 + 0,005

    1 < √(0,01 + 1) < 1 ,005 avec une amplitude de 5 10⁻³ = 0,005